The generator matrix
1 0 1 1 1 0 1 X^2+X 1 1 X^2+X 1 1 X^2 1 1 1 X^2 X 0 1 1 1 X 1 1 1 1 1 1 0 0 1 0 1 1
0 1 1 0 X^2+X+1 1 X 1 X^2+X+1 X 1 1 X^2 1 0 X+1 X^2+X+1 1 1 1 X^2+1 X^2+X 0 1 1 X^2+X 1 1 X^2+X+1 X 1 1 X^2+X+1 1 X^2 X
0 0 X 0 X^2+X X 0 X 0 X X^2 0 X 0 X^2+X X^2 X X X^2+X X^2 X^2 X^2+X X^2 X^2 X^2+X 0 X X^2+X X X^2 X^2+X X^2 X^2+X X^2+X X X
0 0 0 X 0 X X X X^2+X 0 X^2 X^2+X X^2 X X X^2 X^2+X X^2 X^2 X 0 X^2+X X X X 0 X^2 0 0 0 X^2+X 0 0 X^2 X X^2
0 0 0 0 X^2 X^2 X^2 0 X^2 X^2 X^2 0 0 0 0 0 0 0 X^2 X^2 0 0 X^2 0 0 X^2 X^2 X^2 0 X^2 0 X^2 0 X^2 X^2 0
generates a code of length 36 over Z2[X]/(X^3) who´s minimum homogenous weight is 32.
Homogenous weight enumerator: w(x)=1x^0+386x^32+320x^34+682x^36+320x^38+292x^40+38x^44+9x^48
The gray image is a linear code over GF(2) with n=144, k=11 and d=64.
This code was found by Heurico 1.16 in 15.4 seconds.